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Surface effects in the response of a polarisable lattice to an 
external field 

E R Smith and P A Wielopolskit 
Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 10 July 1984, in final form 24 September 1984 

Abstract. We consider surface effects in the response of a plane slab shaped sample of a 
simple cubic lattice of polarisable points with unit spacing to an applied constant external 
electric field E. In the bulk interior, with the polarisability a of a point less than a critical 
value a, = 3/4a, the response is that of a plane slab of continuum dielectric with dielectric 
constant E = (1  + 2x ) / (1 -  x)  with x = a/a,, the value a = a, corresponding to the usual 
polarisation catastrophe. If E is normal to the plane surface of the slab, there is almost 
no difference between the surface and the bulk interior. However if E is parallel to the 
plane surface then there are marked surface effects which can decay slowly as a becomes 
large. There is a second critical polarisability aC2 for this reponse which signals the onset 
of surface effects which propagate undiminished into the bulk of the lattice. 

1. Introduction 

The response of insulating crystals to applied electric fields has been studied rather 
extensively. Much recent work has been devoted to the distortion of (particularly 
ionic) crystal structures by impurity charges and dipoles and some effects of external 
applied fields have also been studied. Because the potential close to an impurity charge 
or dipole can be large, the response (shift of position) of ions to such an impurity is 
often nonlinear in the distorting field, at least close to the impurity. Thus understanding 
of such point impurities requires extensive numerical investigation if the insights gained 
are to be applicable to the distortion of real ionic crystals. However, it must be 
remembered that there are other problems besides the nonlinearity of the short-ranged 
response which can be important in studying the distortion of crystals. One such class 
of problems is that of how to deal with the long-ranged forces which occur between 
charges and dipoles associated with ions and impurities. Accordingly it is of consider- 
able interest to consider simple models of crystals in an attempt to understand some 
of the effects of these long-ranged forces. 

In earlier papers (Smith 1980, Wielopolski 1981 and Smith and Wielopolski 1982) 
we considered the response of a large sample of a simple cubic lattice of unit spacing 
with a point of polarisability (Y at each lattice vertex to various applied electric fields. 
Smith and Wielopolski (1982) (referred to hereafter as I) considered the response of 
the lattice to point charges and point dipoles deep within the lattice. Far from these 
point defects (but still in the deep interior of the sample), the polarisation response 
was that of a continuum dielectric with a rescaled point charge or dipole embedded 
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in it. The dielectric constant is E ( X )  = ( 1  +2x) / (  1 - x), with x = 47ra/3 = a/a , ,  where 
a, = 3/4v  is the critical polarisability for the usual polarisation catastrophe. We found 
no obvious way to interpret the rescaled dipole moment in terms of the usual cavity 
fields and the renormalisations they induce (Bottcher 1973). Another problem con- 
sidered in I was the response of a large lattice sample of given shape to a constant 
applied electric field. Deep within the sample the response was that of a sample of 
continuum dielectric of the same shape as the lattice sample and of dielectric constant 
E ( x ) .  The lattice problem showed the same shape dependence as the Laplace equation 
solutions for the continuum problem. These calculations made a clear connection 
between the electrostatics of continuous media and a simple (zero temperature) model 
of a polarisable lattice. Munn and Eisenstein (1983) have made extensions of the work 
of I to lattices other than simple cubic ones, and have investigated the notion of cavity 
fields further, giving interpretations of how the lattice can renormalise an impurity 
point dipole. Earlier work by Bellemans and Plaitin (1975) considered the change in 
bulk dielectric constant of a medium caused by inclusion of a finite concentration of 
impurities of different polarisability in the lattice. All of these treatments have concen- 
trated on bulk properties. Lehnen and Bruch (1980) used such a polarisable lattice as 
a model of noble gas crystals and studied the response of a crystal surface to a static 
point charge near the surface and were able to show good agreement between their 
models and experimental results of charged particle scattering by such crystal surfaces. 
In this paper we make some contact between that work and our earlier studies by 
considering the polarisation response of the surface region of a plane slab of simple 
cubic lattice of polarisable point atoms when a constant electric field is applied to the 
system. 

Consider then a simple cubic lattice A with unit spacing so that the lattice vertices 
are n = ( I ,  m, n) with I ,  m and n being integers. The sums of electric fields which arise 
in the problems we consider can be conditionally convergent so that to make contact 
with a physical picture, a summation order must be defined. Accordingly we consider 
parallelipiped shaped samples A( N )  defined by 

A( N )  = {n = ( 1, m, n ) : 0 =s I s NI, - N2 s m d N2,  - N3 s n s N3} .  

Each vertex n E A ( N )  carries a point atom of polarisability a. 
A dipole p at r l  sets up an electric field e ( r 2 )  at r2 which is 

e ( r 2 ) = - f ( r 2 - h )  ' E r ,  

if r2 # r ,  and zero if r2 = r , .  Here then, 

r # O  

r = O .  

Under the influence of that field, a point of polarisability a at r2 develops a dipole 
moment ae( r2) .  Suppose then that the lattice sample is exposed to a constant electric 
field E. The electric field at a lattice site m E A ( N )  is then the sum of E and the fields 
at m due to each of the other induced dipoles in A ( N ) .  Thus the polarisation p ( m )  
of the polarisable point at m E A ( N )  may be written 
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To study the response near a surface of a plane slab, we consider the limit N2 = iV3 + CO 

and then NI + 00 of equation (1.3) and calculate p (  I )  = p ( (  I ,  0,O)). 
The bulk response of this plane slab has a polarisation catastrophe. This catastrophe 

may be seen by considering a simpler system of two points of polarisability a, one at 
0 and the second at r. The dipoles pI, p2 produced when an external field is applied 
are given by 

p Z = a E - a t ( r )  * P I ,  pI = a E  - u t ( r )  - p2, (1.4) 

where simple algebra gives by cancellation of the matrix [ I  - a T ( r ) ]  

Q ( r ) = [ I + a t ( r ) ] - ' .  (1.6) 

The eigenvalues of [ I +  a t ( r ) ]  are 1 f 2 a / l r I 3  (eigenvector i )  and 1 + a/lrI3 (two 
eigenvectors, both normal to i )  so that Q diverges as a + 2(r l -3 - .  This divergence of 
pj is the polarisation catastrophe. It is unphysical because it assumes that polarisation 
is linear in the applied field. Normally we could expect the susceptibility of a polarisable 
atom or molecule to saturate as the polarisation becomes large, so that the catastrophe is 
not reached. The main task of the next section is to give an outline of a method of solution 
of (1.3) written in the plane slab limit (PSL). To begin the equation can be put into its PSL 

form by starting with a given h! Then 

N2 N3 

p ( m ; N ) = a E - a  1=0 2 ( m = - N 2  c n = - N 3  c t ( m - ( l , m , n ) ) . p ( ( l , m , n ) ; N ) ) .  (1 .7)  

Now let N2 = N ,  and let both tend to infinity. Assume that the solution depends only 
on m - ( I ,  0,O) and so define 

p(1) = PSL b ( 1 ,  m, n); N ) } .  (1.8) 

Let n = (n, p,,, pz )  and p = (py,  p z )  so that (1.7) may be rewritten, when N ,  also tends 
to +oO as 

a 

(1.9) 

The asterisk on the sum on p here indicates that for py = pz = 0, the m = n term is 
omitted (cf (1.2)). The problem solved in the next section is thus the Weiner-Hopf 
sum equation given by (1.9). 

2. Solution of the sum equations 

It is useful to make the substitution 

p ( m )  =po+ v ' ( m )  (2.1) 

where po is the polarisation expected deep in the interior of a plane slab exposed to 
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the electric field. In I we found 

‘ I - x  
cr 1+2x 

PO=- 1 + 2 x [  ; 

Wielopolski 

1 0  ‘ \ * E  

0 1  

where x =4mx/3. We may put this result and (2.1) into (1.9) and obtain 
X 

v’( m )  = a 7 ’ ( m )  - a T (  m - n )  . v’( n )  for m’Z-0 (2.3) 
n = O  

where 

T ( m ) =  

and 

We expect v’( m )  to decay to zero as m + +CO. General methods for the solution of 
the Wiener-Hopf sum equation (2.3) have been given by Widom (1965) for the case 
when v’( m )  is square summable. They do not apply to (1.9) because the inhomogeneous 
term crE in (1.9) is not square summable. We require summability of T (  m) and 7‘ (  m )  
on [0, CO). We implement these methods on equations for the components of v’( m )  = 
( v ( m ) ,  A ( m ) ,  K ( m ) ) ,  with E = ( E x ,  E,, E ) ,  C L O = ( C L O ~ ,   PO^, par) and 7 ’ ( m ) = ( ~ ~ ( m ) ,  
T ~ (  m ) ,  r3( m ) ) .  The equation for v( m )  may be written 

(2.6) 

Notice that the two-dimensional lattice sum for T ( m )  is absolutely convergent and 
the summand is traceless. Thus 

T22(m)= T33(m) = ; T l l ( m )  Q m. (2.8) 
The other components of v‘( m )  are essentially the same, and (2.8) may be used to give 

oc 

A ( m )  = -aa( m ) p o y  +fa 1 TI, ( m  - n ) h  ( n  ). 
n = O  

(2.9) 

We need to simplify the lattice sums for T ( m ) .  We use a method for lattice sums of 
electrostatic potentials which was developed by de Wette and Nijboer (1958) and 
Nijboer and de Wette (1957, 1958) and used by Massidda (1976, 1978) and Nijboer 
(1984) to examine lattice sums by planewise summation. This method gives more 
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tractable forms than those introduced by Ewald (1921) and used by Smith (1983) to 
study potentials at coulombic crystal surfaces. We consider 

so that for m # 0, 

The method of de Wette and Nijober gives 

(2.10) 

(2.1 1) 

(2.12) 

and thus 

~ , , ( m ) = - 4 ~ '  C IkI exp(-24m/  IkIL m f 0. (2.13) 

This also gives T 2 , ( m )  = T,,(m) by (2.8). The lattice sum for T,,(O) is a simple number 
and is approximately 

k e Z 2  

(2.14) 

Further, (2.7) gives 

a ( m ) =  -4rr2 lkl exp(-2rr(lml+ 1)lkl) [ l  -exp(-27rlkl)]-'. (2.15) 
k E Z 2  

k + O  

The lattice sums for TI , ( m )  and u ( m )  in (2.13) and (2.15) are absolutely (and rapidly) 
convergent. 

We now introduce v+( m )  = v( m )  for m 2 0 and v+( m )  = 0 for m < 0 and 
X 

v - ( m )  = adm)gox - a C T , , ( m  - n ) v + ( n ) ,  m<O (2.16) 
n = - U  

while v-( m )  = 0 for m 3 0. Thus for all m 

We define 
I 

C+(z )=  v+(n) z"  
n = - x  

which must be analytic inside IzI < 1 so that 

(2.17) 

(2.18) 

where the contour C, is a circle just outside the unit circle with centre z = 0. We now 
define 
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and thus 

f , , ( z ) =  T , , ( O ) + H ( z ) + H ( 1 / z ) ,  6 ( z )  = ~ ( 0 )  + G(z)  + G (  l / z )  (2.20) 

where 

(2.21) 

and 

G ( z )  = -47r2z lkl exp(-4~r(kl)  {[l -exp(-2~lk1)][1- z exp(-2~1k()]}-' (2.22) 

are both analytic in e x p ( - 2 ~ )  < /zI < e x p ( 2 ~ ) .  Note that ?(z) = f( l / z ) ,  6 ( z )  = 
6 ( l / z ) .  If v + ( m )  = O ( m P )  then a simple argument from (2.16) shows that 

k # O  

X 

C-(z)= v-(m)zm (2.23) 

is analytic in IzI > exp( -277). Thus we may multiply (2.17) by z"' and sum on m to obtain 

C+.(z)+ ~ ~ ( z ) = a 6 ( z ) I I . o x - a ? , l ( z ) C + ( z )  (2.24) 

m = - a  

in e x p ( - 2 ~ )  < ( z /  < 1 and hence for all z by analytic continuation. Thus we have 

A similar analysis applies to A ( m )  and gives 

1 [-fa;( z)poy - A*-( 1/ z)] 
A(m)=-$ 277i c+ dzzm- '  1 - faTI , (z )  , m 2 0 .  (2.26) 

In the integrand in (2.25), C-( l / z )  is analytic in Iz( < e x p ( 2 ~ )  and the only singularities 
of f l l ( z )  are simple poles which are removed by cancellation with poles of 6 ( z k  The 
only singularities of the integrand in (2.25) are simple poles at the zeros of 1 + aT, , (z ) .  
Let those zeros inside C+ be denoted cj, j 2 1 1 with llj+,IS I<,\ to order them. Then 

where 

These results may now be inserted into (2.24) 
5,. If the 5, are known, this form of $-(l/&',) 
equation solved for the A,. 

To locate the zeros of 1 + a ? , , ( z )  we may 

(2.27) 

(2.28) 

to give C-(l/c,) in terms of the A, and 
may be put into (2.28) and the matrix 

approximate the lattice sum for f, ,( z) 
from (2.19) and (2.21) by including only those k vectors with (kl equal to one of its 
smallest M possible magnitudes. This gives a 2Mth-order polynomial equation for 
the zeros. This M-approximant to the function 1 + a f , , ( z )  has M poles on 0 < z < 1 
and M on 1 < z, so that there are 2 ( M  - 1) zeros of this approximation on the real 
a:is, M - 1 of them inside \zI < 1. Similar conclusions hold for 1 - - ~ a f , , ( z ) .  Note that 
TI ( 1 ) = 8 77/3 = 8.3776 so there is a further zero of the M approximant to 1 + a f, I (z )  
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on, exp(-27~) < z < 1 and one on 1 < z < exp(27). This locates all the zeros of 1 + 
a T l l ( z )  as M + m .  The solution v + ( m )  may now be calculated numerically using a 
particular value of M. A larger value of M may then be taken and the procedure 
repeated until the results are stable in M. The behaviour of v + ( m )  is dominated by 
the form 

(2.29) v + ( m )  = All;"  = A I  exp[-m/DA(a)l 

where cl is the zero inside IzI < 1 closest to z = 1 and D A ( a )  = l / J log( l l  I( is a 'correlation 
length' which measures how far into the plane surface the influence of that surface 
can be seen in the response of the plane slab to a normal applied electric field. 

The solution A ( m )  to (2.26) for the response to a field imposed parallel to the 
surface proceeds in the same way as for v ( m ) .  However while 1 - i a f l I ( z )  has zeros 
on the real axis in 0 < z < exp( - 2 7 ~ )  and exp(27~) < z, the two z$ros on exp(-27~) < z < 
exp(27~) are no longer present. On 0 < a < aC2 = 0.2065, 1 -&TI I (  -1) < 0 and so there 
is a zero on the negative real axis at 11, -1 < l1 <0,  with another zero at l / l l .  For 
ac2 < a < a,  < 3/47  these two zeros move on to the unit circle and move round the 
circle to z = 1 as a + ac. For the case 0 < a < ac2 we then obtain the dominant form 

A ( m )  =A,( - l )"exp(-m/De(a) )  (2.30) 

with &(a )  = l/[loglJ1ll again determining how far the influence of the surface 
penetrates into the bulk. On ac2 < (Y < a,  the two zeros on the unit circle again dominate 
the behaviour of the solution. These solutions are not square summable but in fact 
the above analysis still holds because they are not large enough to affect the analyticity 
properties of the functions concerned. 

3. Discussion 

The numerical procedure is fairly easy to implement, merely requiring the inversion 
of an M x M matrix to obtain the Ai for some M, although it might be said that the 
coefficient matrix is fairly complicated. We found that for M = 5 the procedure gave 
results for v ( m )  and A ( m )  which were stable to five significant figures (which means 
that significantly increasing RI did not change the results to that accuracy). We plot 
the correlation lengths DA(a) and D s ( a )  in figure 1. We discuss the case of field 
normal to the plane surface first. The correlation length is rather insensitive to the 
value of a and remains about 20% of a lattice spacing throughout the range! < a < a,  = 
3/47~20.2387. At a = 0, this length (corresponding to a zero of 1 + a T l l ( z )  which 
collapses on to the pole of that function at 6 ,  = exp(-27) when a = 0) is given by 
DA(0) = 1/27r. Thus for the field normal to the surface there is almost no deviation of 
the polarisation response from the bulk value pox except in the first surface layer. For 
this surface layer, we may consider v ( 0 ) / p o x ,  the fractional deviation of the surface 
polarisation from its bulk interior value. The solution shows that this is a function 
which is negative and increasing in a, but which remains less than 0.03 in magnitude. 
In fact v ( 0 ) / p o x  -8.024 07 at a = 0.2. We plot v ( 0 ) / p o x  as a function of a in figure 
2. We see that the polarisation response normal to the surface shows almost no surface 
effect. Any surface effects decay by a factor about e-' for each layer into the surface. 
In the outermost surface layer, the polarisation is more than 97% of its bulk interior 
value for all values of a on O <  a < a,. 
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a a 

Figure 1. Plots of D,(a)(lower curve, no diverging 
at ac2) and D,(a)(upper curve) as functions of a. 

Figure 2. Plot of - v ( 0 ) / p o x  as a function of a. 

The situation is very different for the response to a field parallel to the plane slab 
surface, as is shown by our solution Afm).  The correlation length &(a) is also plotted 
in figure 1. It diverges as (ac2 - cy)-' as a + aC2-. On the range 0 < a < ac2, the 
polarisation response shows surface effects which alternate in sign, layer by layer, as 
they propagate in from the surface. For aCz < a < a,, the solution A (m) does not decay 
as m + 00. On this range aC2 < a < a,, there is no 'bulk interior' where surface effects 
have decayed away: they propagate right across the slab. In this region the polarisation 
response appears to be a polarisation wave with a wavelength 2 at a = aCz. As a 
increases from aC2 to a, this wavelength increases so that the polarisation catastrophe 
occurs at a = a, with a divergent response uniform across the whole slab. 

I 

a 

Figure 3. Plot of A ( 0 ) / p o x  as a function of a. 
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